Abstract
This study made use of a shape-based method to analyze the orbital dynamics of a spacecraft subject to a continuous propulsive acceleration acting along the circumferential direction. Under the assumption of a logarithmic spiral trajectory, an exact solution to the equations of motion exists, which allows the spacecraft state variables and flight time to be expressed as a function of the angular coordinate. There is also a case characterized by specific initial conditions in which the time evolution of the state variables may be analytically determined. In this context, the presented solution is used to analyze circle-to-circle trajectories, where the combination of two impulsive maneuvers and a logarithmic spiral path are used to accomplish the transfer. The determined results are then applied to the achievement of the Earth—Mars and the Earth—Venus transfers using actual data from a recent thruster developed by NASA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.