Abstract

The two-element muscle model considered consists of a contractile element defined by a hyperbolic force-velocity relation connected in series with an “exponential spring”. Differential equations for the isometrically developed force during a tetanic contraction and the corresponding contractile element shortening velocity are derived and their stability is investigated. Analytical solutions to both equations are obtained. Two numerical examples are given, the second chosen to illustrate pressure-induced hypertrophy of a cardiac muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call