Abstract
In this paper, an analytical method based on Timoshenko theory is derived for obtaining the in-plane static closed-form general solutions of deep curved laminated piezoelectric beams with variable curvatures. The equivalent modulus of elasticity is utilized to take into account the material couplings in the laminated beam. The linear piezoelectric effect is considered to develop the static governing equations. The governing differential equations are formulated as functions of the angle of tangent slope by introducing the coordinate system defined by the arc length of the centroidal axis and the angle of tangent slope. To solve the governing equations, defined are the fundamental geometric properties, such as the moments of the arc length with respect to horizontal and vertical axes. As the radius is known, the fundamental geometric quantities can be calculated to obtain the static closed-form solutions of the axial force, shear force, bending moment, rotation angle, and displacement fields at any cross-section of curved beams. The closed-form solutions of the circle beams covered with piezoelectric layers under various loading cases are presented. The results show the consistency in comparison with finite results. Solutions of the non-dimensional displacements for the laminated circular and spiral curved beams with different lay-ups are available. The non-dimensional displacements with geometry and material parameters are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.