Abstract

We return to the question of how the choice of stabilizer generators affects the preservation of information on structures whose degenerate ground state encodes a classical redundancy code. Controlled-not gates are used to transform the stabilizer Hamiltonian into a Hamiltonian consisting of uncoupled single spins and/or pairs of spins. This transformation allows us to obtain an analytical partition function and derive closed-form equations for the relative magnetization and susceptibility. These equations are in agreement with the numerical results presented in Viteri et al. [Phys. Rev. A 80, 042313 (2009)] for finite size systems. Analytical solutions show that there is no finite critical temperature, ${T}_{c}=0$, for all of the memory structures in the thermodynamic limit. This is in contrast to the previously predicted finite critical temperatures based on extrapolation. The mismatch is a result of the infinite system being a poor approximation even for astronomically large finite-size systems, where spontaneous magnetization still arises below an apparent finite critical temperature. We extend our analysis to the canonical stabilizer Hamiltonian. Interestingly, Hamiltonians with two-body interactions have a higher apparent critical temperature than the many-body Hamiltonian.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call