Abstract

The paper represents an investigation into thermohydraulic instability in flow of a supercritical fluid with respect to a “density wave”. An analytical solution was obtained for the stability boundary separating stable and unstable modes of the fluid flow. Effects of the thermophysical properties and wall thickness on the flow stability were studied. It was shown that an increase in the thermal conductivity and the thickness of the wall leads to the increase in the flow stability. The theoretically obtained stability boundary was compared with experimental data obtained for the cooling system of superconducting magnets. Taking into account the thermal conjugation “wall-coolant” lifts the problem to the new higher level: an additional parameter is involved into the mathematical description, which causes qualitative changes in the character of the solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.