Abstract
This paper presents an analytical solution of the hyperbolic heat conduction equation for a moving finite medium under the effect of a time-dependent laser heat source. Laser heating is modeled as an internal heat source, whose capacity is given by g(x,t) = I(t) (1 – R)μe−μx while the finite body has an insulated boundary. The solution is obtained by the Laplace transforms method, and the discussion of solutions for two time characteristics of heat source capacities (instantaneous and exponential) is presented. The effect of the dimensionless medium velocity on the temperature profiles is examined in detail. It is found that there exists clear phase shifts in connection with the dimensionless velocity U in the spatial temperature distributions: the temperature curves with negative U values lag behind the reference curves with zero U, while the ones with positive U values precedes the reference curves. It is also found that the phase differences are the sole products of U, with increasing U predicting larger phase differences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.