Abstract

In this article, we solve analytically the nonlinear Doubly Dispersive Equation (DDE) in (1+1)-D by the homogeneous balance method, introduced to investigate the strain waves propagating in a cylindrical rod in complex polymer systems. The linear dispersion relation plays important role in connecting the frequency of the emitted nonlinear waves with the wave number of the ablating laser beam affecting the polymers with their characteristic parameters. In accordance with the normal dispersion conditions, the resulting solitary wave solutions show the compression characters in the nonlinearly elastic materials namely Polystyrene (PS) and PolyMethylMethAcrylate (PMMA). The ratio between the estimated potential and kinetic energies shows good agreement with the physical situation, and as well in making comparisons with the bell-shaped model conducted in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.