Abstract

SummaryClosed‐form solutions are derived for the modal characteristics and seismic response of a base‐isolated structure equipped with additional inerters. By simplifying the structure‐isolator‐inerter system in terms of the two‐degree‐of‐freedom (2DOF) model, the modal frequencies, mode shapes, damping ratios, and participation factors of the system are derived. Consequently, analytical seismic response solutions are formulated by the modal superposition method. Utilizing these analytical solutions, an extensive parametric study has been carried out to investigate the effect of supplement inerters on both the modal characteristics and seismic response of the structure‐isolator‐inerter system. There is a critical inertance leading to the zero second modal participation factor (ie, the disappearance of the second modal response). The associated critical inertance ratio is derived in closed form as well. Moreover, it is observed that the reduction of deformation of isolators by increasing the inertance may be offset by the increase in relative displacements of the superstructure. To circumvent this adverse effect, an optimal range of inertance is identified whereby both the deformation of isolators and the relative displacement of the superstructure are mitigated concurrently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.