Abstract
AbstractThe fiber-reinforced polymer (FRP) plate or sheet debonding or cover delamination (concrete cover separation) failure mode in externally strengthened reinforced concrete beams has attracted a lot of attention. In this paper, a closed-form analytical solution is developed to determine the nonlinear shear stress distribution along the laminate interface and cover area for any load stage assuming a perfect bond. Trilinear moment-curvature and moment-extreme compression fiber strain is assumed to realize the analytical results. By differentiating the FRP axial tension force with respect to position along the beam, closed-form derivatives in terms of curvature and extreme compressive fiber strain are obtained. The results show three distinct regions of constant or stepwise linear shear distribution in each. These correspond to the uncracked, postcracked, and postyielded zones of the shear span. The results are shown to yield an exact match to those numerically obtained by dividing the shear spans into ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.