Abstract
Advection Diffusion Equation is a partial differential equation that describes the transport of pollutants in rivers. Its coefficients (dispersion and velocity) can be constant, dependent on space or time or both space and time. This study presents an analytical solution of a one dimensional non - homogeneous advection diffusion equation with temporally dependent coefficients, describing one dimensional pollutant transport in a section of a river. Temporal dependence is accounted for by considering a temporally dependent dispersion coefficient along an unsteady flow assuming that dispersion is proportional to the velocity. Transformations are used to convert the time dependent coefficients to constant coefficients and to eliminate the advection term. Analytical solution is obtained using Fourier transform method considering an instantaneous point source. Numerical results are presented. The findings show that concentration monotonically decreases with increasing distance and increasing time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering Sciences & Research Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.