Abstract
The purpose of this paper is to present an approach for replacing the effects of each rigid disk mounted on the spin shaft by a lumped mass together with a frequency-dependent equivalent mass moment of inertia so that the whirling motion of a rotating shaft-disk system is similar to the transverse free vibration of a stationary beam and the technique for the free vibration analysis of a stationary beam with multiple concentrated elements can be used to determine the forward and backward whirling speeds, along with mode shapes of a distributed-mass shaft carrying arbitrary rigid disks. Numerical results reveal that the characteristics of whirling motions are significantly dependent on the slopes of the associated natural mode shapes at the positions where the rigid disks are located. Furthermore, the results obtained from the presented analytical method and those obtained from existing literature or the finite element method (FEM) are in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.