Abstract

SUMMARY An analysis method for transient groundwater flow during slug tests performed in vertical cutoff walls is presented. The analytical solution for evaluating hydraulic conductivity of vertical cutoff walls is derived by applying the method of images to the previously developed analytical solution that is exclusively applicable to an infinite aquifer. Two distinct boundary conditions are considered to account for the configuration of the vertical cutoff wall: the wall-soil formation interfaces with or without the existence of filter cakes, that is, constant-head boundary and no-flux boundary conditions. A series of type curves is constructed from the analytical solution and compared with those of a partially penetrated well within an aquifer. The constant-head boundary condition provides faster hydraulic head recovery than the aquifer case. On the other hand, the no-flux boundary condition leads to a delayed hydraulic head recovery. The greater the shape factor and well offset from the center of the cutoff wall, and the smaller the width of the cutoff wall, the greater the effect of the boundary condition observed in the type curves. This result shows the significance of considering proper boundary conditions at the vertical cutoff wall in analyzing slug tests. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.