Abstract
The current work focuses on the motion of a simple pendulum connected to a wheel and a lightweight spring. The fundamental equation of motion is transformed into a complicated nonlinear ordinary differential equation under restricted surroundings. To achieve the approximate regular solution, the combination of the Homotopy perturbation method (HPM) and Laplace transforms is adopted in combination with the nonlinear expanded frequency. In order to verify the achievable solution, the technique of Runge–Kutta of fourth-order (RK4) is employed. The existence of the obtained solutions over the time, as well as their related phase plane plots, are graphed to display the influence of the parameters on the motion behavior. Additionally, the linearized stability analysis is validated to understand the stability in the neighborhood of the fixed points. The phase portraits near the equilibrium points are sketched.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.