Abstract

Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in the strengthening and rehabilitation of steel structures. This paper presents an analytical model for stiffness prediction of CFRP-to-steel double strap joints. Mechanical analysis was performed to determine the shear stress and strain distributions in the bond region, which resulted in deriving a model for stiffness prediction of joints. More than 20 test results from the existing works in the literature were used to validate the proposed model. Results show that the predictions are mostly between 0.8 and 1.2 times the experimental values, with an average error of less than 10%, which demonstrates the effectiveness of the proposed model. Finally, a parametric study with respect to the bond length and the adherend stiffness ratio was performed to give a better understanding of the effect of different parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.