Abstract

The dissolution of calcium ions in concrete in a low-alkalinity environment is an important factor causing a significant increase in the porosity of internal concrete, leading to a deterioration in its mechanical properties and affecting the durability of the concrete structure. In order to improve the reliability of concrete durability design and significantly increase the service life of concrete structures located in soft water environments, it is crucial to establish an analytical method to predict the elastic modulus (Edc) of cement slurry systems suffering from calcium dissolution. Firstly, the hydrated cement particles are regarded as a three-phase composite sphere composed of unhydrated cement particles (UC), a high-density hydrated layer (H-HL), and a low-density hydrated layer (L-HL). By introducing the equivalent inclusion phase (EQ) composed of UC and H-HL, the three-phase composite sphere model can be simplified into an equivalent hydrated cement particle model composed of EQ and L-HL. Finally, the Edc of the two-phase composite sphere composed of the equivalent hydrated cement particles and the porosity of the dissolved cement slurry system are solved by using elasticity theory. The effectiveness of the developed analytical method is verified by comparing it with third-party numerical results. Based on this method, the effects of hydration degree, volume ratio of calcium hydroxide (CH) to hydrated calcium silicate (C-S-H), and volume ratio of inner C-S-H to outer C-S-H on the Edc of the dissolved cement slurry system are analyzed. The parameter analysis indicates that among the three influencing parameters, the hydration degree has the greatest effect on the Edc of the dissolved cement slurry system. This study provides an analytical method for predicting Edc, which can provide some references for the durability design of concrete after calcium dissolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.