Abstract

AbstractThe population density approach is a viable method to describe the large populations of neurons and has generated considerable interest recently. The evolution in time of the population density is determined by a partial differential equation. Now, the discussion of most researchers is based on the population density function. In this paper, we propose a new function to characterize the population of excitatory and inhibitory spiking neurons and derive a novel evolution equation which is a nonhomogeneous parabolic type equation. Moreover, we study the stationary solution and give the firing rate of the stationary states. Then we solve for the time dependent solution using the Fourier transform, which can be used to analyze the various behavior of cerebra.KeywordsFiring RateNeuronal PopulationNeural ComputationComputational NeuroscienceTime Dependent SolutionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.