Abstract

The objective of this work was to find an analytical solution to the stresses in the cohesive damage zone and the damage zone length at the interface between a fibre reinforced polymer (FRP) plate and concrete substrate. Analytical solutions have been derived to predict the stress in the cohesive layer when considering the deformation in the stiff substrate. A two-dimensional cohesive layer constitutive model with a prescribed traction-separation (stress-strain) law was constructed using a modified Williams' approach, and analytical solutions derived for the elastic zone as well as the damage zone. Detailed benchmark comparisons of analytical results with finite element predictions for a double cantilever beam specimen were performed for model verification, and issues related to cohesive layer thickness were investigated. It was observed that the assumption of a rigid substrate in analytical modelling can lead to inaccurate analytical prediction of the cohesive damage zone length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.