Abstract
This work contributed an analytical quasistatic solution to the problem of an infinite viscoelastic plate supported on a Pasternak foundation and subjected to axisymmetric normal loading. The derivation was based on defining a set of iterative functions, each containing information on the plate’s relaxation modulus and on the time-variation of the loading. By writing the sought solution as a linear combination of these functions it was shown how to decompose the original viscoelastic problem into a set of independent elastic plate problems for which analytical solutions exist. Thus, the plate’s deflection evolution at any point of interest was provided in closed-form, without resorting to integral transform techniques. The formulation was applied and subsequently validated for several test cases, demonstrating that a very small set of elastic solutions is needed for generating a highly accurate viscoelastic result. Overall, the proposed solution is deemed well suited for engineering calculations, as a computational kernel for backcalculation, and for benchmarking numerical solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.