Abstract

A strategy of spatial distortion to make an anisotropic problem become isotropic has been previously validated in two-dimensional transverse isotropic (TI) viscoelastic cases. Here, the approach is extended to the three-dimensional problem by considering the time-harmonic point force response (Green's function) in a TI viscoelastic material. The resulting wave field, exactly solvable using a Radon transform with numerical integration, is approximated via spatial distortion of the closed form analytical solution to the isotropic case. Different distortions are used, depending on whether the polarization of the wave motion is orthogonal to the axis of isotropy, with the approximation yielding differing levels of accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.