Abstract
A large family of analytical solitary wave solutions to the generalized nonautonomous cubic-quintic nonlinear Schrödinger equation with time- and space-dependent distributed coefficients and external potentials are obtained by using a similarity transformation technique. We use the cubic nonlinearity as an independent parameter function, where a simple procedure is established to obtain different classes of potentials and solutions. The solutions exist under certain conditions and impose constraints on the coefficients depicting dispersion, cubic and quintic nonlinearities, and gain (or loss). We investigate the space-quadratic potential, optical lattice potential, flying bird potential, and potential barrier (well). Some interesting periodic solitary wave solutions corresponding to these potentials are then studied. Also, properties of a few solutions and physical applications of interest to the field are discussed. Finally, the stability of the solitary wave solutions under slight disturbance of the constraint conditions and initial perturbation of white noise is discussed numerically; the results reveal that the solitary waves can propagate in a stable way under slight disturbance of the constraint conditions and the initial perturbation of white noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.