Abstract

Textured functional surfaces are finding applications in the fields of bioengineering, surface energy, hydrodynamics, lubrication, and optics. Electrical discharge machining (EDM), which is normally used to generate smoother surface finish on various automotive components and toolings, can also generate surfaces of rough finish, a desirable characteristic for texturing purposes. There is a lack of modeling efforts to predict the surface textures obtained under various EDM operating conditions. The aim of the current work is to capture the physics of the electrical discharge texturing (EDT) on a surface assuming random generation of multiple sparks with respect to (i) space, (ii) time, and (iii) energy. A uniform heat disk assumption is taken for each individual spark. The three-dimensional (3D) texture generated is utilized to evaluate a 3D roughness parameter namely arithmetic mean height, Sa. Surface textures obtained from the model are validated against experimentally obtained ones by comparison of distribution of Ra values taken along parallel sections along the surface. It was found that the distribution of simulated Ra values agrees with that of experimental Ra values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.