Abstract

Nanoparticles-based infusion strategies are presently being employed for a range of clinical interventions either for in vivo or in vitro applications while imposition of magnetic field is also identified as an important technique for fluid manipulation during nanoparticles-based propulsion. The impact of magnetic field to control of the transport of nanoparticles-based blood flow is demonstrated numerically over an elaborate variant of transport mechanisms. Mathematical formulations were undertaken and stability analysis of the mathematical problem was a scrutinized by generation of eigen values using the Lyapunov scheme. The numerical solution based on Chebysehev pseudo-spectra and spectra homotopy analysis method (SHAM) was implemented to handle the combination on nonlinear ordinary differential equations derived from the transport models. We observed that far-field of the stagnation point, nanoparticles specie dispersion increased with higher thermal diffusivity, while the decrease in concentration profile around the vicinity of stagnation point depicts clustering of nanoparticles-embedded blood flow. The observations revealed that higher magnitude of thermophoretic parameters constitute significantly to increase in momentum as well as energy fields during transport of nanoparticles-containing blood flow under magnetic field influence. These findings showed the potentials of magnetic-field for control of suspended particles in transport medium which could be harnessed to manipulate transport of nanoparticles-containing fluids in microfluidic platforms with intricate configurations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call