Abstract

A technique for analyzing periodic processes based on the introduction of an analytical signal is described. This technique allows the instantaneous frequency, amplitude, and phase of oscillations to be obtained. The data on solar brightness fluctuations collected with the DIFOS multichannel photometer onboard the CORONAS-F satellite are processed. The p-mode spectral lines are broadened mainly by amplitude fluctuations, while the frequency stability appears to be high (∼10−4). A method for separating signals with close frequencies is developed. The p-mode with l = 0 and n = 21 is used as an example to show that the separation of signals with close frequencies is possible when the conventional spectral methods are inefficient. Analysis of the phase shifts between the oscillations observed in various optical channels of the DIFOS photometer has revealed that the five-minute oscillations travel from the upper and deep photospheric layers toward the middle photospheric layers. This effect directly proves that the evanescent p-modes in the photosphere are nonadiabatic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.