Abstract

Secretions from meibomian glands located within the eyelid (commonly known as meibum) are rich in nonpolar lipid classes incorporating very-long (22-30 carbons) and ultra-long (>30 carbons) acyl chains. The complex nature of the meibum lipidome and its preponderance of neutral, nonpolar lipid classes presents an analytical challenge, with typically poor chromatographic resolution, even between different lipid classes. To address this challenge, we have deployed differential mobility spectrometry (DMS)-MS to interrogate the human meibum lipidome and demonstrate near-baseline resolution of the two major nonpolar classes contained therein, namely wax esters and cholesteryl esters. Within these two lipid classes, we describe ion mobility behavior that is associated with the length of their acyl chains and location of unsaturation. This capability was exploited to profile the molecular speciation within each class and thus extend meibum lipidome coverage. Intriguingly, structure-mobility relationships in these nonpolar lipids show similar trends and inflections to those previously reported for other physicochemical properties of lipids (e.g., melting point and phase-transition temperatures). Taken together, these data demonstrate that differential ion mobility provides a powerful orthoganol separation technology for the analysis of neutral lipids in complex matrices, such as meibum, and may further provide a means to predict physicochemical properties of lipids that could assist in inferring their biological function(s).

Highlights

  • Secretions from meibomian glands located within the eyelid are rich in nonpolar lipid classes incorporating very-long (22–30 carbons) and ultra-long (>30 carbons) acyl chains

  • We subjected a methanolic solution of meibum spiked with ammonium acetate to ESI to generate abundant [M+NH4]+ ions from wax ester (WE) and cholesteryl ester (CE) species

  • We have described the ability of differential mobility spectrometry (DMS) to achieve nearbaseline separation of the two dominant neutral lipid classes present in human meibum, WEs and CEs

Read more

Summary

Introduction

Secretions from meibomian glands located within the eyelid (commonly known as meibum) are rich in nonpolar lipid classes incorporating very-long (22–30 carbons) and ultra-long (>30 carbons) acyl chains. The complex nature of the meibum lipidome and its preponderance of neutral, nonpolar lipid classes presents an analytical challenge, with typically poor chromatographic resolution, even between different lipid classes To address this challenge, we have deployed differential mobility spectrometry (DMS)-MS to interrogate the human meibum lipidome and demonstrate near-baseline resolution of the two major nonpolar classes contained therein, namely wax esters and cholesteryl esters. We have deployed differential mobility spectrometry (DMS)-MS to interrogate the human meibum lipidome and demonstrate near-baseline resolution of the two major nonpolar classes contained therein, namely wax esters and cholesteryl esters Within these two lipid classes, we describe ion mobility behavior that is associated with the length of their acyl chains and location of unsaturation.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.