Abstract
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdős-Rényi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case in which the mean degree scales as with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance from each other. The distribution of shortest path lengths between nodes of degree m and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of m, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.