Abstract

We present an algorithm for the analytical evaluation of dimensionally regularized massless on-shell double box Feynman diagrams with arbitrary polynomials in numerators and general integer powers of propagators. Recurrence relations following from integration by parts are solved explicitly and any given double box diagram is expressed as a linear combination of two master double boxes and a family of simpler diagrams. The first master double box corresponds to all powers of the propagators equal to one and no numerators, and the second master double box differs from the first one by the second power of the middle propagator. By use of differential relations, the second master double box is expressed through the first one up to a similar linear combination of simpler double boxes so that the analytical evaluation of the first master double box provides explicit analytical results, in terms of polylogarithms Li a −t/s , up to a=4, and generalized polylogarithms S a, b (− t/ s), with a=1,2 and b=2, dependent on the Mandelstam variables s and t, for an arbitrary diagram under consideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.