Abstract

To capture the stochastic characteristics of renewable energy generation output, chance-constrained unit commitment (CCUC) model is widely used. Conventionally, analytical reformulation for CCUC is usually based on simplified probability assumption or neglecting some operational constraints, otherwise scenario-based methods are used to approximate probability with heavy computational burden. In this paper, Gaussian mixture model (GMM) is employed to characterize the correlation between wind farms and probability distribution of their forecast errors. In our model, chance constraints including reserve sufficiency and branch power flow bounds are ensured to be satisfied with predetermined probability. To solve this CCUC problem, we propose a Newton method based procedure to acquire the quantiles and transform chance constraints into deterministic constraints. Therefore, the CCUC model is efficiently solved as a mixed-integer quadratic programming problem. Numerical tests are performed on several systems to illustrate efficiency and scalability of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.