Abstract

Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at different landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars–moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its reflectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos. Long- and short-lived radionuclide chronometry such as 53Mn–53Cr and 87Rb–87Sr systematics can date pivotal events like impacts, thermal metamorphism, and aqueous alteration on Phobos. It should be noted that the Phobos regolith is expected to contain a small amount of materials delivered from Mars, which may be physically and chemically different from any Martian meteorites in our collection and thus are particularly precious. The analysis plan will be designed to detect such Martian materials, if any, from the returned samples dominated by the endogenous Phobos materials in curation procedures at JAXA before they are processed for further analyses.

Highlights

  • Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX)

  • If we find possible Martian materials in the returned Phobos samples, the first investigation will be to search for the accumulation of organic materials under an optical microscope

  • The Sample Analysis Working Team (SAWT) members, are designing the initial analysis plan of the returned samples to achieve the scientific objectives of MMX and to maximize its scientific results

Read more

Summary

Introduction

Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). The scientific goals of the MMX mission are (i) to reveal the origin of Martian moons, and to make progress in our understanding of planetary system formation, and of primordial material transport around the border between the inner and outer regions of the early solar system, and (ii) to observe processes that impact the evolution of the Mars system from a new vantage point, and to advance our understanding of Mars’ surface environment transition (Kuramoto et al 2018; Usui et al 2020) (Table 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call