Abstract

The bond between Carbon Fiber Reinforced Polymer (CFRP) tendons and concrete depends on the resin mechanical properties that can degrade under environmental conditions. An analytical model to predict the combined effects of temperature and humidity fluctuations on the bond behaviour of CFRP tendons embedded in concrete is presented. The interaction between a CFRP tendon and concrete is studied by considering different competing mechanisms such as tendon swelling and plasticisation effects due to the concrete internal humidity, differential thermal expansion, concrete autogeneous shrinkage, Poisson’s ratio effects and radial bond stresses generated during the pulling out of a tendon from concrete. The analytical bond failure predictions correlate reasonably well with experimentally observed radial-cracking failure modes of CFRP tendons in high strength concrete. Matrix plasticisation appears to influence the long-term bond strength of FRP rods in normal or high strength concrete. Swelling and shrinkage effects become significant in uncoated tendons due to their impact on the frictional bond component. Deviations between measured and predicted bond strength values are attributed to a possible overestimate of the moisture-induced swelling expansion of CFRP tendons. The research findings suggest the introduction of environmental bond factors to consider durability effects in the design of FRP prestressed concrete structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.