Abstract

A Laser Induced Breakdown Spectroscopy (LIBS) technique has been applied for the identification of four widely used plastics, polyethylene terephthalate (PET), high-density polyethylene (PE), polypropylene (PP) and polystyrene (PS), whose recycling is required from commercial and biosafety points of view. The 3rd harmonic (355 nm) nanosecond pulse from an Nd:YAG laser is used to create plasma on the sample surface and identification of the type of the plastic is derived from the plasma emission. Principal Component Analysis (PCA) of the LIBS spectra is employed for the classification of plastics. Distinct methods have been used, apart from principal components of PCA, to further confirm our results. Statistical parameters, viz., Mahalanobis distance (M-distance) and spectral residuals were used for decisive match/no match test which provided successful classification of plastics. Receiver Operating Characteristic (ROC) and Youden's index analyses were carried out to obtain the diagnostic threshold for classification of all four classes of plastics. Sensitivity, specificity, predictive values and discriminative accuracy of the classification tests based on the optimum threshold were calculated. This proves the analytical predictive capabilities of the LIBS technique for plastic identification and classification. The technique of LIBS, in future, can be routinely used in field applications such as plastic waste sorting and recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.