Abstract
This paper presents an analytical method based on the unequal division shear-zone model to study the machining predictive theory. The proposed model only requires workpiece material properties and cutting conditions to predict the cutting forces during the orthogonal cutting process. In the shear zone, the material constitutive relationship is described by Johnson–Cook model, and the material characteristics such as strain rate sensitivity, strain hardening, and thermal softening are considered. The chip formation is supposed to occur mainly by shearing within the primary shear zone. The governing equations of chip flow through the primary shear zone are established by introducing a piecewise power law distribution assumption of the shear strain rate. The cutting forces are calculated for different machining conditions and flow stress data. Prediction results were compared with the orthogonal cutting test data from the available literature and found in reasonable agreement. In addition, an analysis of the deviation from experimental data for the proposed model is performed, the effects of cutting parameters and tool geometry were investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.