Abstract

A new empirical analytical approach is developed for predicting the stress concentration profile around an in-situ tow break in filament-wound composites. A shear-lag analysis is firstly performed to solve for the perturbational axial displacement of the broken tow and resultant debonding lengths. Solution of stress field caused by tangential load on the surface of an elastic half space is then utilized in combination with superposition concepts to obtain the overload magnitudes in the neighboring tows. Subsequently, high-fidelity finite element analysis on a representative uni-directional laminate model under different stress states is performed, and excellent overall agreement is observed between analytical and numerical predictions. The proposed method takes into account essential aspects such as transversely isotropic material properties, in-situ stress states and their effect on the interfacial frictional forces in the debonded interfaces, and thus provides a convenient way to evaluate the stress concentration factors in damaged filament-wound composites. In addition, this approach can be applied to yield auxiliary failure evaluation criteria for statistical strength prediction or finite element modeling of filament-wound composites or similar structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call