Abstract

An exact two-dimensional (2D) piezoelasticity solution is presented for free vibration and steady-state forced response of simply supported piezoelectric angle-ply laminated circular cylindrical panels in cylindrical bending under harmonic electromechanical load, with and without damping. The piezoelectric layers are polarized along radial direction to induce extension actuation/sensing mechanism. The variables are expanded layerwise in Fourier series to satisfy the boundary conditions at the simply supported ends. The governing equations get reduced to ordinary differential equations in thickness direction with variable coefficients and these are solved by the modified Frobenius method. The unknown coefficients of the solution are obtained using the transfer matrix method. Results for the natural frequency and its variation with ply angle and for steady-state response due to harmonic electromechanical excitation are presented for single layer piezoelectric panel, and hybrid multilayered inhomogeneous test, composite and sandwich panels. The numerical results presented in tabular form would serve as useful benchmark for assessing one-dimensional (1D) panel theories for free vibration and harmonic response of hybrid cylindrical panels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.