Abstract
We present an analytical calculation of periodic orbits in the homogeneous quartic oscillator potential. Exploiting the properties of the periodic Lam{\'e} functions that describe the orbits bifurcated from the fundamental linear orbit in the vicinity of the bifurcation points, we use perturbation theory to obtain their evolution away from the bifurcation points. As an application, we derive an analytical semiclassical trace formula for the density of states in the separable case, using a uniform approximation for the pitchfork bifurcations occurring there, which allows for full semiclassical quantization. For the non-integrable situations, we show that the uniform contribution of the bifurcating period-one orbits to the coarse-grained density of states competes with that of the shortest isolated orbits, but decreases with increasing chaoticity parameter $\alpha$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.