Abstract

This paper investigates the performance of Rayleigh-product multiple-input multiple-output (MIMO) channels in the presence of both co-channel interference (CCI) and thermal noise. We obtain closed form expressions for the cumulative distribution function and probability density function of the output signal-to interference-plus-noise ratio (SINR) when optimum combining is employed. In contrast to prior results, our expressions apply for arbitrary numbers of interferers with arbitrary powers. Furthermore, the impact of noise is firstly addressed in our expressions. These are made possible based on the recent random matrix theory tools from which the new statistical properties of maximum eigenvalue of the resultant channel matrix can be derived. The new statistical results permit a general analysis for outage probability of the optimum combining system in Rayleigh-product MIMO channels. Simulation results are also provided to validate the analysis and to examine the effect of CCI and thermal noise on performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.