Abstract

In the present work we derive an analytical expression for the pressure–deflection curve of circular membranes subjected to inflation. This problem has been studied mostly from a numerical point of view and there is still a lack of accurate closed-form solutions in nonlinear elasticity. The analytical formulation is developed with a semi-inverse method by setting a priori the kinematics of deformation of the membrane. A compressible Mooney–Rivlin material model is considered and a pressure–deflection relation is derived from the equilibrium. The kinematics is approximated and therefore the obtained solution is not exact. Consequently, the formulation is adjusted by introducing an additional polynomial function in the pressure–deflection equation. The polynomial is calibrated by fitting numerical solutions of the exact system of differential equilibrium equations. The calibration is done over a wide range of constitutive parameters that covers the response of all rubber materials for technological applications. As a result, a definitive and accurate expression of the applied pressure as a function of the deflection of the membrane is obtained. The formula is validated with finite element (FE) simulations and compared with other solutions available in the literature. The comparison shows that the present model is more accurate. In addition, unlike the other models, it can be applied to compressible materials. Experimental uniaxial and bulge tests are carried out on rubber materials and the model proposed is used to characterize the Mooney–Rivlin constitutive parameters. Since the pressure–deflection formula is accurate and easy-to-use, it is an innovative tool in engineering applications of inflated membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.