Abstract

SummaryTwo main methods for controlling switching converters exist in the literature. The direct one is the voltage mode control, which suffers from some disadvantages such as slow response to load variations and an input voltage‐dependent total loop gain. The current mode control can overcome these problems but at the expense of extra cost and more complex control design. V1 concept is a new promising control technique for designing voltage mode control of buck‐type converters with an optimal response similar to current mode control. In this paper, the dynamics and the stability of buck converters under V1 control are studied. In particular, subharmonic oscillation limits in the parameter space are addressed. First, a closed‐loop state‐space model is derived and then used to formulate an analytical matrix‐form expression for predicting the stability limit of the system. Using this expression, multi‐parametric stability boundaries are obtained. It is shown that the equivalent series inductance of the output capacitor can narrow the stability region. It is also demonstrated that the integral action in the feedback loop of a V1‐controlled buck converter has a negligible effect on the subharmonic oscillation boundary. The theoretical analysis is validated through numerical simulation of the circuit‐level switched model of the system. Copyright © 2017 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.