Abstract
Gypsum drywall partitions may contribute significantly to the lateral strength and stiffness of woodframe structures, whether or not the walls are explicitly designed for that purpose. This paper proposes analytical models to determine the lateral shear strength and initial elastic stiffness of wood-framed gypsum wall panels, taking into account the effects of wall geometry, door and window openings, connector type and spacing, and wall boundary conditions. The strength and stiffness models are incorporated in a multilinear curve to describe the monotonic lateral shear versus deformation response of the walls. Additional parameters to calibrate the response of a peak-oriented hysteretic cyclic model are also proposed, thus making the models suitable for nonlinear time-history simulations of woodframe buildings. The models are developed and validated using published data from 16 shear tests of full-scale gypsum wall panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.