Abstract

The thin-walled tubular deployable composite boom (DCB) can realize folding and deploying functions, and it has a good application prospect in space field. This paper investigates the folding behaviour of the tubular DCB by analytical modeling. Based on the Archimedes’ helix, the geometrical model of the DCB was established. By combining equilibrium equation and energy principle, an analytical model to predicted the folding moment versus rotational displacement of the DCB was presented. The failure indices in the equal-sense and opposite-sense folding processes were calculated utilizing Tsai‐Hill and maximum stress criteria. Analytical results agreed well with experimental and numerical results. At last, the influence of geometric parameters (i.e., radius, central angle and thickness of cross-section) on the folding behaviour of the DCB was further studied using the analytical model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.