Abstract

Analytical models to evaluate vehicle dynamic handling properties are extremely interesting to the project engineer, as these can provide a deeper understanding of the underlying physical phenomena being studied. It brings more simplicity to the overall solution at the same time, making them very good choices for tasks involving large amounts of calculation iterations, like numerical optimization processes. This paper studies in detail the roll gradient, understeer gradient and steering sensitivity vehicle dynamics metrics, starting with analytical solutions available in the literature for these metrics and evaluating how the results from these simplified models compare against real vehicle measurements and more detailed multibody simulation models. Enhancements for these available analytical formulations are being proposed for the cases where the initial results do not present satisfactory correlation with measured values, obtaining improved analytical solutions capable of reproducing real vehicle results with good accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.