Abstract
The white layer formed in machining has significant impacts on the friction property, fatigue resistance, and service life of products. This paper presents an analytical model for white layer prediction in orthogonal cutting based on phase transformation mechanism. The effects of stress, elastic, and plastic strain on phase transformation temperature are taken into consideration. A function related to cutting temperature and phase transformation temperature is defined to determine the white layer thickness. The theoretical model is validated by machining AerMet100 steel under different cutting conditions. Optical microscope and X-ray diffraction (XRD) are employed to analyze the microstructures of the white layer. A phase transformation is detected in the white layer region, and the predicted white layer thicknesses are in good agreement with the measured values. In addition, the plastic strain is found to be the major factor that causes a reduction in phase transformation temperature. This work can be further applied to optimize cutting conditions to improve machined surface integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.