Abstract

This work presents a physics-based predictive model for transient temperature during heating state and cooling state in powder feed metal additive manufacturing (PFMAM). The deposition dimension, heat transfer boundary conditions, laser absorption, and latent heat are considered in the presented model. The temperature solution is constructed from the superposition of moving point heat source solution and heat sink solution based on a stationary coordinate with respect to the part boundary. The heat source solution is activated during heating state and deactivated during cooling state. The temperature profiles and molten pool evolution were predicted with respect to the processing time in single-track deposition of PFMAM of Inconel 718. Close-agreements were observed upon validation to the experimental results in the literature. The presented model has high computational efficiency without resorting to the mesh and iterative calculation. The high prediction accuracy and high computational efficiency allow the temperature prediction for large-scale parts, and process-parameter planning through inverse analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.