Abstract

Grinding is usually applied for particle reinforced metal matrix composites (PRMMCs) to achieve high ground surface quality. However, the surface quality especially surface roughness is difficult to predict theoretically due to different mechanical properties of two or more phases inside the PRMMCs. In this study, an analytical model of the surface roughness of ground PRMMCs is developed based on an undeformed chip thickness model with Rayleigh probability distribution by considering the different removal mechanism of metal matrix and reinforcement particles in grinding. GT35, a typical kind of steel based metal matrix composite reinforced with TiC particles is investigated as an example. Nanoindentation experiments are employed for the investigation of nanomechanical properties and cracking behavior of GT35 and the nanoindentation results are integrated in the model. Single factor surface grinding experiments of GT35 are also carried out to understand the material removal mechanism of GT35 and validate this novel surface roughness prediction model. The predicted surface roughness from this model shows good agreement with the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call