Abstract

We present a novel and comprehensive quantum analytical modeling of a sub-20 nm Dual Metal Double Gate (DMDG) Tunnel Field Effect Transistor (TFET) for the first time in literature. Owing to structural confinement at sub-20 nm regime, the energy states at channel are quantized and carrier propagation is regulated by quantum transport . We address such quantization aspects (viz. subband quantization, bandgap shifting, tunneling through barrier etc.) and incorporate them in analytical modeling using self-consistent solution of Schrödinger-Poisson's equation. As a result of work function difference at gate, we observe creation of quantum well , followed by a tunneling barrier, along the channel. Energy states in the quantum well are derived from Schrodinger equation, whereas, transmission coefficients are derived for each tunneling barrier. Finally, current density is obtained using ‘Landauer formula for quantum transport’. We methodically study the effects of structural confinement on device performances and observe significant shift from classical counterpart. Moreover, we note that quantization in DMDG TFET can be optimized that will lead to superior device performance. The results are verified with simulation data in each occasion to substantiate analytical models. • In this work, compact analytical model of quantum confinement in low-dimensional Dual Metal Double Gate TFET is presented. • Formation of quantum well, quantum tunneling, band gap widening effect and density of states correction are analysed. • Modelling is done based upon self-consistent Schrödinger-Poisson's solution and ‘Landauer formula for quantum transport’. • Device performances are explored in light of quantum confinement and results are validated through device simulation. • Comparative performance analysis is presented between semi-classical and quantum approach..

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.