Abstract
In order to predict the performance of a permanent magnet linear braking (ECB) with cylindrical structure, an analytical model is established in this paper. The model is based on the magnetic equivalent circuit (MEC) method with the consideration of the often ignored magnetic saturation in pole shoe. The influence of induced eddy current is taken into account by introducing the magnetomotive force (MMF) in the model. To obtain braking force, a simple method for approximating the cross-section of the electric field with mean value method is proposed. The proposed model that can predict the braking force performance of ECB in a wide range of structural dimensions is obtained through referring to a small number of finite element models. A prototype test is carried out. The validity of the proposed method is verified through experiment and FEM. Results show that the braking force predicted by the presented method are in good agreement with experimental results and FEM results under different design parameters. The proposed model can accurately represent the variation trend of braking force and critical speed with design parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Electromagnetics and Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.