Abstract

AbstractThis study aims to analytically predict the material impact wear rate and improve the prediction accuracy and applicability of existing impact wear prediction models. The ABAQUS software was used to numerically model and analyze the erosion pit morphology and stress distribution characteristics. Micromorphological testing was used to investigate the impact wear damage mechanism, and an improved impact wear prediction model was developed by introducing the particle size. The results show that the maximum von Mises stress in the impact area of the target material can reflect the severity of the damage to the target material. The peak stress varies with the impact angle. The target material significantly absorbs the energy of small particles at higher impact angles and large particles at vertical impacts. The depth of the hardened layer resulting from particle impact increases from 3 to 10 μm with increasing impact angle. When the impact angle is unchanged, the depth of the hardened layer increases by 3% to 5% with an increase in particle size. The hardened layer limits further plastic deformation of the metal material. Comparing the analysis results with the experimental results reveals that the proposed formula that uses the size factor can predict the volume loss of plastic metallic materials with different particle sizes, impact angles, and impact velocities more accurately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call