Abstract

The behavior of bridge monolithic connections is modeled using a simplified mathematical model that accounts for stress equilibrium, compatibility of deformations, and the state of bond of longitudinal column bars anchored through the joint panel. In this regard, a stress gradient factor is introduced, to model the profile of bar stresses along the anchorage. To establish this factor, two independent mechanisms of stress transfer are considered: a bond mechanism between the anchored bars and the surrounding concrete and a friction mechanism between the anchored bars and the transverse bars that enclose and restrain the anchorages. The model is used for calculation of the shear stress-shear strain relationship of all tests found in the international literature on bridge monolithic connections that showed shear type of failure under simulated seismic loading. Joint strength values calculated with the proposed model are compared with the experimental results. Based on this comparison the proposed model is verified for use in interpretation of bridge monolithic connection behavior and design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call