Abstract

The study aims at developing a predictive analytical force model for the micro end-milling operation taking into account the material strengthening as well as the edge radius effects that come into play at the micro level. The mechanistic models for macro end-milling process have been extensively reported in literature and such models predominantly use milling force coefficients which are empirically determined from end-milling experiments. The proposed model for micro end-milling is based on determination of milling force coefficients from fundamental oblique cutting approach. The edge radius effect has been accounted by analyzing the rubbing action similar to the rolling of a cylinder over work surface. Johnson-Cook material model has been modified based on the strain gradient plasticity theory incorporating the increase in material strength with decreasing uncut chip thickness. From the micro orthogonal cutting experiments, a good agreement between the experimental and predicted shear strength values is observed. The force model is validated against measured forces in end-milling experiments carried out on the KERN Evo 5 axis micro machining center. The feed and lateral forces are predicted within 10% deviation on an average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.