Abstract

Theoretical analysis is performed for the loss characteristics of a polymer arrayed waveguide grating (AWG) multiplexer around the central wavelength of 1.55 μm with the wavelength spacing of 1.6 nm . The total loss of the device includes the diffraction loss in the input and output (I/O) slab waveguides, bent loss caused by the AWG and I/O channels, leakage loss resulted from the high refractive index substrate, and propagation loss due to the absorption and scattering of the materials of the device. The effects of some structural parameters on the loss characteristics are investigated and discussed. The computed results show that when we select the core thickness as 4 μm , core width as 6 μm , pitch of adjacent waveguides as 15.5 μm , diffraction order as 50, the number of the arrayed waveguides as 91, that of the I/O channels as 17, confined layer thickness between the core and the substrate as 10 μm , distance between the focal point and the origin as 5500 μm , and central angle between the central waveguide and the x-axis (i.e. the vertical of the symmetrical line of the device) as 60°, the total loss of the device can be dropped to the range 3.79– 7.93 dB .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.