Abstract

An analytical model is used to describe the electrical characteristics of a dual-junction tandem solar cell performing with a conversion efficiency of 32.56% under air mass 1.5 global (AM1.5G) spectrum. The tandem structure consists of a thin heterojunction top cell made of indium gallium phosphide (InGaP) on gallium arsenide (GaAs), mechanically stacked on a relatively thick germanium (Ge) substrate, which acts as bottom cell. In order to obtain the best performance of such a structure, we simulate for both the upper and lower sub-cell the current density–voltage, power density–voltage, and spectral response behaviors, taking into account the doping-dependent transport parameters and a wide range of minority carrier surface recombination velocities. For the proposed tandem cell, our calculations predict optimal photovoltaic parameters, namely the short-circuit current density (Jsc), open-circuit voltage (Voc), maximum power density (Pmax), and fill factor (FF) are Jsc = 28.25 mA/cm2, Voc = 1.24 V, Pmax = 31.64 mW/cm2, and FF = 89.95%, respectively. The present study could prove useful in supporting the design of high efficiency dual junction structures by investigating the role of different materials and physical parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call